
A body moves with simple harmonic motion of amplitude A and frequency $\frac{b}{2\pi}$.

What is the magnitude of the acceleration when the body is at maximum displacement?

- A zero
- B $4\pi^2Ab^2$
- $C Ab^2$
- $D \qquad \frac{4\pi^2 A}{b^2}$

(Total 1 mark)

2

A ball of mass m, which is fixed to the end of a light string of length l, is released from rest at X. It swings in a circular path, passing through the lowest point Y at speed v. If the tension in the string at Y is T, which one of the following equations represents a correct application of Newton's laws of motion to the ball at Y?

$$A \qquad T = \frac{mv^2}{l} - mg$$

$$\mathbf{B} \qquad T - mg = \frac{mv^2}{l}$$

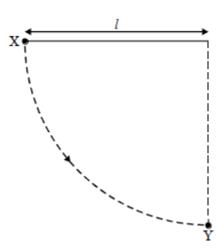
$$\mathbf{C} \qquad mg - T = \frac{mv^2}{l}$$

$$D \qquad T + \frac{mv^2}{l} = mg$$

A body is in simple harmonic motion of amplitude 0.50 m and period 4π seconds. What is the speed of the body when the displacement of the body is 0.30 m?

- **A** 0.10ms⁻¹
- **B** 0.15ms⁻¹
- \mathbf{C} 0.20 m s⁻¹
- **D** 0.40 m s^{-1}

(Total 1 mark)



Which one of the following statements always applies to a damping force acting on a vibrating system?

- A It is in the same direction as the acceleration.
- **B** It is in the same direction as the displacement.
- **C** It is in the opposite direction to the velocity.
- **D** It is proportional to the displacement.

(Total 1 mark)

A simple pendulum consists of a bob of mass m on the end of a light string of length l. The bob is released from rest at X when the string is horizontal. When the bob passes through Y its velocity is v and the tension in the string is T. Which one of the following equations gives the correct value of T?

A
$$T = mg$$

$$B \qquad T = \frac{mv^2}{l}$$

$$\mathbf{C} \qquad T + mg = \frac{mv^2}{l}$$

$$D \qquad T - mg = \frac{mv^2}{l}$$

(Total 1 mark)

A particle of mass m executes simple harmonic motion in a straight line with amplitude A and frequency f. Which one of the following expressions represents the total energy of the particle?

A
$$2 \pi^2 mfA^2$$

B
$$2 \pi^2 mf^2 A^2$$

C
$$4 \pi^2 m^2 f^2 A$$

D
$$4 \pi^2 mf^2 A^2$$

(Total 1 mark)

A simple pendulum and a mass-spring system both have the same time period *T* at the surface of the Earth. If taken to another planet where the acceleration due to gravity was half that on Earth, which line, **A-D**, in the table gives correctly the new periods?

	simple pendulum	mass-spring
Α	Τ√2	T
В	$\frac{T}{\sqrt{2}}$	T
С	Τ√2	$\frac{T}{\sqrt{2}}$
D	$\frac{T}{\sqrt{2}}$	<i>T</i> √2

A body undergoes forced oscillation. Which one of the following will **not** be increased by increasing the amplitude of the oscillatory driving force?

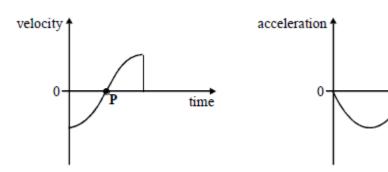
- A the amplitude of the driven oscillation
- **B** the energy of the driven oscillation
- **C** the frequency of the driven oscillation
- **D** the power required to maintain the driven oscillation

(Total 1 mark)

Which one of the following statements is **not** true for a body vibrating in simple harmonic motion when damping is present?

- **A** The damping force is always in the opposite direction to the velocity.
- **B** The damping force is always in the opposite direction to the acceleration.
- **C** The presence of damping gradually reduces the maximum potential energy of the system.
- **D** The presence of damping gradually reduces the maximum kinetic energy of the system.

(Total 1 mark)


For which of the following relationships is the quantity *y* related to the quantity *x* by the

relationship
$$x \propto \frac{1}{y}$$
?

	x	У
Α	energy stored in a spring	extension of the spring
В	gravitational field strength	distance from a point mass
С	de Broglie wavelength of an electron	momentum of the electron
D	period of a mass-spring system	spring constant (stiffness) of the spring

11

The diagrams show the variation of velocity and acceleration with time for a body undergoing simple harmonic motion.

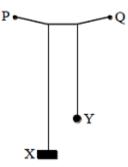
Which one of the following is proportional to the change in momentum of the body during the time covered by the graphs?

- A The area enclosed by the velocity-time graph and the time axis
- B The gradient of the velocity-time graph at the point P
- **C** The area enclosed by the acceleration-time graph and the time axis
- **D** The gradient of the acceleration-time graph at the point **Q**

(Total 1 mark)

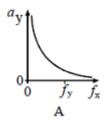
time

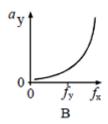
12

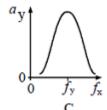

A particle is oscillating with simple harmonic motion described by the equation:

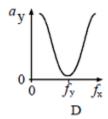
$$s = 5 \sin(20\pi t)$$

How long does it take the particle to travel from its position of maximum displacement to its mean position?


- A $\frac{1}{40}$
- $B = \frac{1}{20} S$
- $c = \frac{1}{10} s$
- D $\frac{1}{5}$ s


The diagram shows two pendulums suspended from fire same thread, PQ.




 ${\bf X}$ is a heavy pendulum, the frequency $f_{\bf x}$ of which can be varied. ${\bf Y}$ is a lighter pendulum of fixed frequency $f_{\bf y}$. As the frequency of oscillation of ${\bf X}$ is increased by shortening the thread, the amplitude of the oscillation of ${\bf Y}$ changes.

Which one of the following graphs best represents the relationship between the amplitude a_y of the oscillation of **Y** and the frequency f_x of **X**?

Mark schemes

С

13

С 1 [1] В 2 [1] С 3 [1] С [1] D [1] В 6 [1] Α [1] С 8 [1] В 9 [1] С 10 [1] С 11 [1] 12 [1]

[1]